INTERACTIVE WEB PRESENTATION
FOR FACTCHECK FRAMEWORK

Practical Course: Computer Science 1

Hynek Zemanec*

Faculty of Computer Science, University of Vienna, Wahringer Str. 29, 1090 Vienna, Austria

20228

Contents
1 Introduction 1
2 Project Definition 1
2.1 Concept . . ... ... ... ... ..., 2
2.2 Graphical Prototype . . . ... ... .. 2
3 Project Management 2
3.1 Data Management . .. ... ...... 3
3.2 Version Control . . . . . ... ... ... 3
3.3 Deployment . . . .. ... ... .. ... 3
4 Architecture 3
4.1 Directory Structure . . . . . ... .. .. 4
4.2 Security . . .. ... . 5
5 Visual Elements 5
5.1 Layout . . ... ... ... ... .... )
5.2 Animations . ... ... ... ... ... 6
5.3 Presentation. . . ... .. ... .. ... 6
54 Gallery . .. ... ... ... ... 6
55 Demo . ... ... ... ... 6
5.6 Form . .. ... ... .. ... 6
6 Challenges (]
6.1 Usertesting . . ... ... .. ...... 6
6.2 GitLab. . . ... ... ... ... ... 7
6.3 Cross-origin resource sharing . . .. .. 7

Abstract

The project aims to aid the introduction of the
FactCheck framework to the mewcomers using an in-
teractive web presentation. Areas of concern are ex-
planation of important vocabulary, animated visualiza-
tions of foundational concepts, overview of underly-
ing FactCheck services and their architecture, show-
case of existing projects and their authors, offering of
the available projects, interactive demonstration of the
framework and a point of contact. Leveraging the rich
ecosystem of the JavaScript library React, state of the

*e-mail:hynekz20Qunivie.ac.at

art React framework NextJS is configured to support
dynamic routing and the build process producing static
exports. Design system Material Ul, with styled JSX,
modified to support SASS syntax is used to ensure vi-
sual consistency. TypeScript was used to ensure type
safety. Additionally, customized NPM scripts together
with GitLab Pipeline configuration for automated de-
ployments is provided. Repeated user testing (n = 10)
were basis for content improvements and identification
of usability issues.

1 Introduction

FactCheck is a cloud-based framework for automatic
detection and resolving of conflicting data on the in-
ternet. It is developed by the Multimedia Informa-
tion Systems research group at the University of Vi-
enna. The framework consists of a large number of
modules and individual services for different aspects of
the framework such as data acquisition, data compari-
son and analysis, presentation of the results and other
related functions. The idea behind the framework is
not to be an arbiter of factual information. The goal is
to provide an overview of possibly conflicting informa-
tion based on the same information found elsewhere on
the internet. This tends to confuse new comers. Con-
sequently, large time investments are needed to give a
proper introduction into the idea of the framework as
well as interpretation of the underlying complex pro-
cesses. Facilitating the onboarding of parties interested
in FactCheck framework, this project aims to mitigate
outlined difficulties by means of an interactive web pre-
sentation.

2 Project Definition

The main goal is to introduce main concepts in lay-
man’s terms in visually attractive and intuitive set-
ting. Successful execution of the project mandates suf-
ficient high-level understanding of framework’s compo-
nents and respective projects. The implementation is
carried out using multimedia elements facilitating in-
teractive storytelling via logically connected sections.



Sections provide a seamless integration (both content-
wise and by means of fluid transitions), resulting in a
default story path concluded by a call to action. Fur-
thermore, the online experience is tailored so that user
can choose to navigate through the sections in arbitrary
order without loss of context. Supporting the idea of
an uninterrupted experience, the website has been con-
ceptualized as a one-page website with dynamically an-
imated parts triggered and loaded by scrolling. Since
the website has been built using a mobile-first design
approach, the advantage of web based solution is that
it can be easily viewed by any device with an access to
the internet, with a modern web browser installed.

For the sake of completeness, the original description
of the project as offered by the department reads:
This topic aims to create a convincing, clear, under-
standable presentation of the FactCheck framework as
well as its related components and services. The re-
sult of this work is an interactive website that makes
use of illustrations, animations, and other interactive
tools to present FactCheck in its full range. The inter-
active setup should allow for a personalized experience,
guide the user through the topic, and therefore provide
a better understanding of complex interrelations.

2.1 Concept

In the initial phase of the project, conceptual map'
has been modeled to capture all areas of concern to be
addressed. Further broadening the range of require-
ments suggested earlier, the following list enumerates
identified concerns in the conceptual map:

e What is FactCheck framework
e The problem setting
e Vision and the idea of the framework

e Description of the process that arrives to the com-
parison results

e Architecture of the FactCheck framework
e Showcase the ongoing and finished projects

e Advertise the available projects and technologies
used

e Introduction of the team
e Live Interactive Demo

e Point of contact using form and available contact
information

Beyond the identified requirements, adequate multi-
media constructs as well as conceptual illustrations are
included in the map. During the iterative process of
merging related parts into logical sections, a following
sequence of sections emerged:

IMiro Board available at https://miro.com/app/board/
uXjV0Ci1Hy0=/

1. Introduction: Landing Page with simple illustra-
tion

2. FactCheck Journey: Interactive slideshow describ-
ing steps

3. Gallery: Screenshot previews from implemented
projects

4. Architecture: Illustrated overview of FactCheck
constituents and technologies

5. Demo: interactive editors communicating with

FactCheck API

6. Projects: description and techstack of all past,
present and available projects

7. Challenges: identified shortcomings and opportu-
nities for development

8. Team: some team members and their bios

9. Contact: contact form

2.2 Graphical Prototype

Since the conceptual map has substituted the role of
wire-frame diagrams, the next phase was a graphical
design. Thanks to source files provided by Material Ul
library for variety of prototyping software, the graphi-
cal design is visually consistent with the final website.
The prototyping software Figma? was used both for
the reference design as well as production and export
of vector graphics.

3 Project Management
The project management has mirrored the philosophy
of agile development. Specifically, with the exception
of the design and conceptual phase, the development
has been iteratively carried out in weekly sprints, with
gradual improvements being made based on received
feedback. Such weekly sprint can be generalized as:

1. Gather requirements/feedback

2. Design

3. Implement the changes

4. Present and test

Milestones and sequence of activities are illustrated
by the the prospective schedule in table 1.

?Design  available  at
1FjSXEqwC1WBOViOEHFsP6

https://www.figma.com/file/


https://miro.com/app/board/uXjVOCi1Hy0=/
https://miro.com/app/board/uXjVOCi1Hy0=/
https://www.figma.com/file/1FjSXEqwC1WBOViOEHFsP6
https://www.figma.com/file/1FjSXEqwC1WBOViOEHFsP6

3.1 Data Management

As previously mentioned, one of the tasks was to
showcase existing projects, offer the available ones and
introduce areas with potential for improvement. This
required understanding of the constituent FactCheck
projects and contacting of the concerned authors to
verify description correctness. The process of produc-
ing comprehensible descriptions of individual projects
lead to an organized collection of 14 definitions of
projects together with their author contact informa-
tion and their current status. The file is stored in

\fact-check-landing\public\data\projects. json.

Additions to the file is reflected in the projects sec-
tions, where each project is rendered as a component.
Moreover, projects can be filtered by means of the
implemented filter component, narrowing the selection
based on the project status. Listing 1 demonstrates
an expected structure of a project entry.

Listing 1: Project format

[
{
"author": "John_ Doe",
"project": "Example, Project",
"mail": "exampleQunivie.ac.at",
"techstack": ["Python", "Azure",
— "UML"],
"status": "Done",
"description": "ExampleDescription"
3,

-]

In the same location as projects, a JSON file
challenges. json is stored, listing current shortcom-
ings of the FactCheck framework. Similarly to the
projects, entries are processed and are dynamically ren-
der into a word cloud. The relative size of each entry
can be controlled using count parameter accepting val-
ues from the interval [1,50] . Listing 2 demonstrates
an expected structure of an entry.

Listing 2: Challanges format

"value": "User acceptanceytesting",
"count": 38

} 2

3.2 Version Control

The source code has been version-controlled (and re-
motely archived) by the GIT platform GitLab pro-
vided by the University of Vienna. The code is
available online at https://gitOllab.cs.univie.
ac.at/p1/2022ss/12010957-hynek-zemanec. Top-
level README.md contains instruction for local devel-
opment. The git workflow used for versioning man-
agement utilized issue#-dev-master branching model
where:

1. issue# refers to the branch associated to given
issue number allocated to it using the GitLab issue
tracker

2. dev is the development branch
3. master tested code released to the the production

In this model issue branches are made from the devel-
opment branch that contains the latest changes. The
issue branch after being completed is merged back to
the development branch which is then merged to the
master branch. Merging with the master branch trig-
gers automated deployment process.

3.3 Deployment

The deployment takes advantage of the GitLab’s
CI/CD pipelines. The configuration of the stages of
the automated deployment process is defined within
.gitlab-ci.yml.

1. build
2. deploy

As the name suggest, the build stage transforms Type-
Script files together with all dependencies into a single
bundle of statically generated files. This is achieved
by downloading the image of node and running the the
NPM scripts yarn and yarn export, to download and
install node dependencies and generate static files (as
a result of the build process), respectively. The deploy
stage pulls an image of Ubuntu, installs an SSH agent
and using a provided SSH key synchronizes the arti-
facts of the build stage with specified remote directory.
The process is depicted in the UML state diagram in
the figure 1.

For hotfixes and other manual deployments, the de-
veloper can run yarn deploy which runs the same se-
ries of commands except for last step calling a shell
script deploy.sh which synchronizes generated files
with the server using the linux utility rsync?.

4 Architecture

The main state of the art tool used in the project is
the React framework NextJS. The framework provides
abstraction for many different aspects of web devel-
opment that are not part of the core React library.
Examples of these abstractions are routing, CSS in
JS support, image optimization, TypeScript support,
server side rendering, static generation and others to
name just a few. Although not required, NextJS and
other similar libraries tend to group both business logic
and style information in one file. This may arguably
break the principle of separation of concerns, however
it proves beneficial when targeting elements within an
isolated context of a component. Since NextJS offers
support for TypeScript, static type checking is offered

3This generally requires a password or SSH key for server
authentication


https://git01lab.cs.univie.ac.at/p1/2022ss/12010957-hynek-zemanec
https://git01lab.cs.univie.ac.at/p1/2022ss/12010957-hynek-zemanec

Table 1: Prospective Schedule

WEEK(s) Duration (weeks) Milestone

1 1 CONCEPT: Gathering and Modelling of Requirements

2 1 CONCEPT: Wire-frame Prototype Design , feasibility experiments
3-4 2 IMPL: Initial prototype

5-9 5 IMPL: Implementation, Design Iterations & User Testing

10 1 IMPL: Final Modifications & Deployment

11 1 REPORT: Finalize the Project, Begin Report

12-13 2 FINAL: Finish report, Present Results, Lessons Learned

by the editor, ensuring type safety. Additionally, Type-
Script provides automatic documentation within the
editor and therefore the project can be easily modified
or expanded.

React allows developers to build user interfaces in
a declarative fashion. In general, it follows the object-
oriented principle of composition over inheritance, that
manifest in a recursive component structure where Re-

‘.Merge request to main‘ act translates to JavaScript functions written using

' XML-like JSX syntax. The main shortcoming of this
Pull NodeJS image approach is complicated management of shared state*

) that needs to be passed through the chain of com-
|NodeJS v16.13.1 installed | ponents and be kept at the highest level component
' | " (Higher Order Component or HOC). To enable better
Install node dependencies scalability, developers tend to use global state manage-

_ ment solutions such as Redux or React’s Context API.

‘ node dependencies installed | Since the application does not utilize shared state, the

solution via HOC is sufficient.

Static Export

‘. Generated static artifacts . 4.1 Directory Structure

The directory structure of the project source directory

fact-check-landing is as following:
/
_ L fact-check-landing
Ubuntu image pulled l components
' configs
install SSH layout
_ . pages
| SSH agent installed | public
i ' sections
‘_ _ slides
| SSH key added styles
' | The components directory stores component mod-
Synchronize artifact changes on server ules that are meant to be reusable pieces of code con-
_ tained in pages. Configurations of the NextJS back-
| Changes synchronized on server | ground processes are stored in the configs directory.

Layouting elements used in pages that semantically
and visually group components are located in layout.
Aforementioned directory pages stores pages which
are top-level components components that expose URL
paths that are identical to their name®.

Figure 1: CI/CD State Diagram The folder public contains static resources that are

meant to be kept unchanged and merely copied to the

4state where n components is subscribed
SE.g.: a file projects.ts translates to a route
example.com/projects



production bundle (images, server configurations, man-
ifest etc.). Sections located in the directory of the same
name are logically grouped units of content used with-
ing pages. A specific type of directory is slides in
which components that have contents and behaviour
specific for a slide used in a Presentation component
are located. Finally, styles directory contains config-
uration files for the material design system and globally
utilized CSS styles. For an easier understanding of the
relationships between described constituents, figure 2
illustrates their composition hierarchy.

=)

Layout

Section

£
component

E|
slides

Figure 2: Component Hierarchy

An entry file for the application located in the pages
directory is _app.tsx. Here all essential components
that are required to be passed down through the com-
ponent hierarchy are imported. This includes fonts,
theme settings, style resets, layouting logic and possi-
bly other higher order business logic.

4.2 Security

At the time of writing of this document, the website
demo is available at https://wwwlab.cs.univie.ac.
at/~hynekz20/fc/. Since the website is not meant
to be publicly accessible, it is protected by simple
authentication using combination of .htaccess and
.htpasswd. Passwords are hashed by cryptographic
algorithm SHA-1. Both files are located in the pre-
viously mentioned public directory and are valid for
configured Apache2 HTTP server. For access creden-
tials, contact the author or a MIS research group mem-
ber.

5 Visual Elements

For visual consistency, the project uses Material Ul
(MUI) Design System library that offers variety of vi-
sually pleasing, accessible and optimized components.
This also covers fonts and font sizes, colors, shad-
ows, viewport breakpoints, transitions and other ele-
ments frequently encountered in the build process. Us-
ing a design system ensures identical behaviour and

appearance of the website across browsers. More-
over, the design system used bases it’s existence on
Material design system developed and maintained by
Google. This provide assurances that components
have been extensively tested for usability, intuitive-
ness and that they conform to industry best prac-
tices. Configuration of MUI library can be found in
\fact-check-landing\styles\theme. js

5.1 Layout

The semantic layer of the layout is defined as 3 high-
level regions:

e Header
e Main
e Footer

In header, navigation bar is placed with links to es-
sential parts of the page that have been evaluated as
the most important. Those are:

e How It Works (presentation of main concepts)

e Demo (interactive editors communicating with

API)
e Projects (grid of project descriptions)
e Contact (contact form)

Main region is the largest container that encapsulates
all content that is further subdivided into sections. The
entry point for individual sections is located in the
index.ts in the pages directory. Finally, footer con-
tains a contact form and auxiliary website information.
Described structure of the layout is advantageous for
introduction of new pages, where the main content can
be easily changed and footer with header are kept un-
modified.

On the lowest level, the layout is managed by the
flex-box based Grid system of the MUI library. The
library defines a container component with item chil-
dren that can have specified fracture of horizontal space
occupied within the container depending on different
viewport sizes (breakpoints). The breakpoints in px
units have been defined as the following:

e xs =0

e md = 600
e 1g = 900
e x1 = 1200
e xs = 1536

Breakpoints ensure that valid media-query rules are
generated and applied automatically to facilitate a re-
sponsiveness of components. For projects and other
grid-like sections the Masonry component is used, that
resemble a pattern of an exposed brick wall. This
means that components are dynamically placed in the
grid based on the free space available.


https://wwwlab.cs.univie.ac.at/~hynekz20/fc/
https://wwwlab.cs.univie.ac.at/~hynekz20/fc/

5.2 Animations

In the project 2 approaches are used regarding anima-
tions and element transitions. The first uses built-in
transitions in the MUI library that are applied uni-
formly to the Components and the second approach
uses CSS animations targeting DOM elements. The
former is used for dynamic transitions of components
such as sliding, fading, growing or zooming in. The lat-
ter has been used for more granular control over com-
plex interactions. To animate the part of the web page
when user scrolls it is required to keep track of what
component is currently in the viewport. This is ac-
complished using the react-intersection-observer mod-
ule abstracting standardized intersection observer API.
When tracked component enters the viewport, a call-
back triggering an animation is executed. Example of
more intricate animations are animated SVG illustra-
tions in the introductory section and the first slide of
the presentation component. Here the timing, type of
motion and sequence of animation vary based on as-
signed class for which different rules apply.

5.3 Presentation

The FactCheck Journey section is a corner stone of
the project. It uses a MUI stepper component as a
wrapper for individual slides, walking to user through
series of steps. These can be navigated either through
buttons at the bottom or by clickable step numbers at
the top of the component. Number of varying com-
ponents were used in slides including, but not limited
to, modal dialog, zoomable images, expandable accor-
dion, pop-up helpers or interactive charts. The entry
point for the Presentation component is located in
the process.tsx page where all slides are imported
and forwarded for display.

5.4 Gallery

Gallery, the subsequent section after the presentation
showcases screenshots of existing applications, namely
IdaFix and Dashboard. The gallery can be controlled
either using buttons below the current image descrip-
tion or by swiping on the touch devices (as indicated
by the hinting icon). Another component that display
images is the Logo Slider component. As the name
suggests, the component displays perpetually moving
series of clickable logos that lead to respective website
of given vendor or technology. At the same time, all
the logos are desaturated by default. When hovering
over a logo, the image gains color and is enlarged to
indicate possible click action.

5.5 Demo

The Demo component marks the second most impor-
tant section as it interactively demonstrates the sim-
plified usage of the FactCheck framework. It is a com-
bination of material Tab components, text editors and
comparison result matrix (component displaying 4 nu-
merical values). Overall it consists of 4 editable text

editors with JSON-Ld content. Content of editors rep-
resent 4 entities, a local entity and 3 remote entities.
The editors are implemented using Code Mirror library
with addons to support JSON syntax highlighting and
linting. In case of a syntax error, the erroneous location
in the editor is highlighted with red markers. Addition-
ally, affected tab is marked with an error icon and alert
dialog listing affected editors is displayed. When con-
tents of all editors contain valid JSON syntax, send
button is enabled, allowing values to be sent for com-
parison. Clicking the send button triggers parsing of
the editor contents into JSON data which is then sent
via POST request to the server that processes incom-
ing data and returns the comparison metrics. All 4 re-
turned comparison metrics are subsequently displayed
in the comparison matrix subcomponent.

5.6 Form

The last important component that been merely briefly
touched on is the contact form. While MUI library
provides abstractions of form input fields to ease the
styling, state management is left to to the developer.
The complexity of managed states in such form can
grow fast as each field maintains at least 2 states spe-
cific for the field (validity and value) that can be mod-
ified by events (onchange and onblur). Depending on
the state of input, the field can be either in error (red),
valid (green) or unvisited state (primary color). Each
input field requires custom validation. The form can
be sent only after all fields are successfully validated.
Successful form submit is concluded by success mes-
sage in a dialog. In the current implementation, the
server side validation is carried out by PHP script
emailHandler.php located in the root of the public
directory. Furthermore, the PHP script sends an email
with the form contents to the specified destination.
The user submitting the form will also receive an email
with a copy of the submitted contents as a conforma-
tion.

6 Challenges

The most challenging part of the project was the con-
figuration of it’s constituents to facilitate mutual in-
teroperability. For instance, configuration of the build
process to enable static export required specification of
custom image loader and base path used for routing.
The initial plan was to use CSS-in-JS library Styled-
Components (SC) in conjunction with MUI. However,
this combination proved problematic as the style en-
gine used in MUI conflicted with it’s SC counterpart.
This resulted in dropping of the SC dependency and
focusing the styling efforts on the built in Styled JSX,
offering similar functionality.

6.1 User testing

User testing has been carried out multiple times by to-
tal of 10 volunteers, both on mobile devices and desk-



top. It has uncovered numerous usability and compre-
hension issues. Some of those problems were:

e unintuitive presentation descriptions

e unexpected or missing helper pop ups

e jittery scrolling

e unresponsive Demo

e slow editor changes when typing in Demo

e performance bottlenecks during project filtration

e Confirmation message is not sent after form sub-
mission

All problems uncovered by the user testing have been
located and fixed. Notably, the performance of Demo
component has been significantly improved by using a
debounced callback. This specific code construct de-
lays the update of the component state that occurs in
the editor by a specified amount of time. If a new
debounced callback occurs before the timeout, the pre-
vious one is discarded. Since the content of the editor
is stored both by the Code Mirror internal logic and
the React component, fast pace changes don’t need to
be continually rewritten in the component’s state on
every key press. This approach results in considerable
performance increases.

6.2 GitLab

Another challenging aspect was the automated de-
ployment. Specifically, configuration of the GitLab
pipelines initiating the build process and synchroniz-
ing the produced artifact with the remote server (as
described in the Deployment section) proved error-
prone. First, many of the GitLab functionalities (such
as CI/CD or GitLab variables) are disabled by default
and need to be enabled by administrator. Second, it
is not sufficient to merely request a default version of
target image. Proper version of node is crucial for suc-
cessful build. Further, location of the build artifacts
may vary depending on the GitLab server settings. Fi-
nally, default Ubuntu image does not contain any Linux
utilities, namely ssh agent or rsync. Those need to be
installed before an attempted use.

6.3 Cross-origin resource sharing

Cross origin resource sharing or COORS is a security
mechanism implemented in all modern browsers that
block resources with a different origin. In other words,
resources can be requested but the returned response
is blocked by browsers unless authorization header list-
ing the requesting domain is present on the response.
This security feature can’t be disabled on the client
and therefore requires modification of the API. The
only affected component was the Demo, since it com-
municates with API on a different server. After the
API was modified, the problem persisted. Despite ac-
cepting the JSON format as a response, the solution

was to change the "Accepted" header format from
"application\json" to "application\xml".

Conclusion

The interactive presentation website built using Nex-
tJS and Material UI has fulfilled all defined require-
ments within the bounds of scheduled time frame.
Built using the mobile-first approach, the website is
responsive and optimized for performance. Usability
issues uncovered during user testing have been fixed.
The website interactively guides the user through es-
sential concepts of the FactCheck framework, describes
Architecture and show-cases existing projects. Addi-
tionally, user can filter the projects based on the sta-
tus, send a message through the contact form and try
out the simplified simulation of FactCheck entity com-
parison. The language of choice TypeScript with op-
tional strong typing enabled static type checking, self-
documenting of the components and easy extension of
the code base. New projects and shortcomings that are
rendered in components can be added into respective
files. Build process has been configured to produce a
static export that can be easily deployed on virtually
any HTTP server. The project includes deployment
configuration for GitLab pipelines that enables contin-
uous delivery.



	Introduction
	Project Definition
	Concept
	Graphical Prototype

	Project Management
	Data Management
	Version Control
	Deployment

	Architecture
	Directory Structure
	Security

	Visual Elements
	Layout
	Animations
	Presentation
	Gallery
	Demo
	Form

	Challenges
	User testing
	GitLab
	Cross-origin resource sharing


